

FLOW Counter-Current Deionization System

B GOSHU KOHSAN CO., LTD.

The UPCORE System (Up-flow Counter-Current Deionization System)

Introduction

Now it is the time for a new deionization technology, which uses regenerant chemicals more efficiently, diminishes wastewater volumes significantly, and reduces the effluent post-processing.

The UPCORE system uses DOWEX* UPCORE resins in packed-bed ion exchange demineralizers. This advanced technology provides the significant productivity and economic advantages of counter-current deionization without the drawbacks of earlier-generation processes. These counter-current deionization systems typically generate 50% less effluent while consuming about half the amount of regenerant chemicals and service water of co-current systems. Also, the regeneration in counter-current system is approximately twice as fast as in co-current systems, thus achieving higher water quality.

Key advantages of the UPCORE system :

- M Simple design
- M Easy to control and automate
- ► Inexpensive
- M Ideal for upgrades
- M Easy configurability of layered beds
- Optimized vessel volume utilization
- Insensitive to flow rate variations
- ★ Self-cleaning, no separate backwash step needed

^{*} The UPCORE system, an modern down-flow service and up-flow regeneration technology pioneered by The Dow Chemical Company.

Product water

^{*} A system design bases on water quality and your application requirement.

Examples of Practical Use of Counter-Current Deionization

Item		Unit		Case 1 SAC ¹⁾ -SBA ²⁾		Case 2 SAC-Deg 3)-SBA		Case 3 SAC-Deg ³⁾ -SBA	
				Co-flow	Counter-flow	Co-flow	Counter-flow	Co-flow	Counter-flow
	Total Cation	ppm as CaCO ₃		62		245		507	
Raw Water Quality	Total Anion	ppm as CaCO ₃		64		62.5		• 178	
	%SiO ₂			15.7		52		20	
Treated Water Quality	Conductivity	μs/cm	 Average 	10	1	10	1	10	1
			 End-point 	15	4	15	4	20	4
	SiO ₂	ppm as CaCO ₃	 Average 	0.2	0.05	0.2	0.05	0.2	0.05
			End-point	0.3	0.1	0.3	0.1	0.3	0.1
Regeneration Level		g(100%HCI)/I-R		80	57	80	57	112.5	65
		g(100%NaOH)/I-R		87.5	58	105	71	95	60

Remarks: The data was calculated by computer design program

1) Strong Acid Cation Resin 2) Strong Base Anion Resin 3) Degasifier

Applications

- Rinsing water in semiconductor-electronics industries to control the product quality
- Feed water for boiler to reduce the potential of scale occurrence
- 3. Processing water in pharmaceutical field
- Processing and rinsing water in plating and coating field
- 5. Others

^{*} All designs and specifications will be subject to change with or without notice.

UPCORE System Comparison to Co-Current System							
Attributes	UPCORE	Co-Current flow	Benefit over Co-Current flow				
 Simple Construction 	+	+					
Water Quality	+		• Conductivity < 2 μs/cm				
Water Productivity	+		● 130-200% higher				
Chemical Efficiency			Lower chemical				
- Single bed	+		consumption ~ 50-70 %				
- Layered bed	++	+	reduction				
Regeneration Time	+		Almost 50% less time				
Waste Stream	++	-	Reduction up to 50%				
Resin Cleaning	+	+					
Vessel Utilization	+		Lower free board				
			requirement				

UPCORE System Comparison to Up-flow Service System						
Attributes	UPCORE	Up-flow Service Counter-Current	Benefit over Up-flow Service			
Simple Construction	+	-	 External backwash tank for cleaning is not required 			
Water Quality	+	+	Tara de encelo			
Chemical Efficiency	+	+				
Vessel Utilization	+	+				
Regeneration Time	+	+				
Rebuild Suitability	+	· ·	 More economically suitable for co-current retrofits 			
Layered Beds without Middle Plate	+	•	•			
Control / Automation	+	-	 Insensitive to change in flow rate and/or no interruptions during production cycle 			
● Fines Removal	+	-	 Resin trap to avoid carry-over of fines is not required No suspended solids accumulated in resin bed 			

GOSHU KOHSAN CO., LTD.

70 MOO 5, KINGKAEW ROAD, BANGPHLI, SAMUTPRAKARN, 10540 THAILAND Tel : 0-2312-4159, 0-2312-4171-5, 0-23124165-7, 0-2750-3192-9, 0-2750-3200-1

Fax: (662)312-4162 http://www.goshukohsan.com E-mail: cservice@goshukohsan.com