FLOW Counter-Current Deionization System **B** GOSHU KOHSAN CO., LTD. ## The UPCORE System (Up-flow Counter-Current Deionization System) ### Introduction Now it is the time for a new deionization technology, which uses regenerant chemicals more efficiently, diminishes wastewater volumes significantly, and reduces the effluent post-processing. The UPCORE system uses DOWEX* UPCORE resins in packed-bed ion exchange demineralizers. This advanced technology provides the significant productivity and economic advantages of counter-current deionization without the drawbacks of earlier-generation processes. These counter-current deionization systems typically generate 50% less effluent while consuming about half the amount of regenerant chemicals and service water of co-current systems. Also, the regeneration in counter-current system is approximately twice as fast as in co-current systems, thus achieving higher water quality. ## Key advantages of the UPCORE system : - M Simple design - M Easy to control and automate - ► Inexpensive - M Ideal for upgrades - M Easy configurability of layered beds - Optimized vessel volume utilization - Insensitive to flow rate variations - ★ Self-cleaning, no separate backwash step needed ^{*} The UPCORE system, an modern down-flow service and up-flow regeneration technology pioneered by The Dow Chemical Company. Product water ^{*} A system design bases on water quality and your application requirement. ## **Examples of Practical Use of Counter-Current Deionization** | Item | | Unit | | Case 1 SAC ¹⁾ -SBA ²⁾ | | Case 2 SAC-Deg 3)-SBA | | Case 3 SAC-Deg ³⁾ -SBA | | |--------------------------|-------------------|--------------------------|-------------------------------|---|--------------|-----------------------|--------------|-----------------------------------|--------------| | | | | | Co-flow | Counter-flow | Co-flow | Counter-flow | Co-flow | Counter-flow | | | Total Cation | ppm as CaCO ₃ | | 62 | | 245 | | 507 | | | Raw Water
Quality | Total Anion | ppm as CaCO ₃ | | 64 | | 62.5 | | • 178 | | | | %SiO ₂ | | | 15.7 | | 52 | | 20 | | | Treated Water
Quality | Conductivity | μs/cm | Average | 10 | 1 | 10 | 1 | 10 | 1 | | | | | End-point | 15 | 4 | 15 | 4 | 20 | 4 | | | SiO ₂ | ppm as CaCO ₃ | Average | 0.2 | 0.05 | 0.2 | 0.05 | 0.2 | 0.05 | | | | | End-point | 0.3 | 0.1 | 0.3 | 0.1 | 0.3 | 0.1 | | Regeneration Level | | g(100%HCI)/I-R | | 80 | 57 | 80 | 57 | 112.5 | 65 | | | | g(100%NaOH)/I-R | | 87.5 | 58 | 105 | 71 | 95 | 60 | Remarks: The data was calculated by computer design program 1) Strong Acid Cation Resin 2) Strong Base Anion Resin 3) Degasifier ## **Applications** - Rinsing water in semiconductor-electronics industries to control the product quality - Feed water for boiler to reduce the potential of scale occurrence - 3. Processing water in pharmaceutical field - Processing and rinsing water in plating and coating field - 5. Others ^{*} All designs and specifications will be subject to change with or without notice. | UPCORE System Comparison to Co-Current System | | | | | | | | |---|--------|-----------------|------------------------------------|--|--|--|--| | Attributes | UPCORE | Co-Current flow | Benefit over
Co-Current flow | | | | | | Simple Construction | + | + | | | | | | | Water Quality | + | | • Conductivity < 2 μs/cm | | | | | | Water Productivity | + | | ● 130-200% higher | | | | | | Chemical Efficiency | | | Lower chemical | | | | | | - Single bed | + | | consumption ~ 50-70 % | | | | | | - Layered bed | ++ | + | reduction | | | | | | Regeneration Time | + | | Almost 50% less time | | | | | | Waste Stream | ++ | - | Reduction up to 50% | | | | | | Resin Cleaning | + | + | | | | | | | Vessel Utilization | + | | Lower free board | | | | | | | | | requirement | | | | | | UPCORE System Comparison to Up-flow Service System | | | | | | | |---|--------|------------------------------------|---|--|--|--| | Attributes | UPCORE | Up-flow Service
Counter-Current | Benefit over
Up-flow Service | | | | | Simple Construction | + | - | External backwash
tank for cleaning is
not required | | | | | Water Quality | + | + | Tara de encelo | | | | | Chemical Efficiency | + | + | | | | | | Vessel Utilization | + | + | | | | | | Regeneration Time | + | + | | | | | | Rebuild Suitability | + | · · | More economically
suitable for co-current
retrofits | | | | | Layered Beds
without Middle Plate | + | • | • | | | | | Control / Automation | + | - | Insensitive to change in
flow rate and/or no
interruptions during
production cycle | | | | | ● Fines Removal | + | - | Resin trap to avoid
carry-over of fines is
not required No suspended solids
accumulated in resin bed | | | | #### GOSHU KOHSAN CO., LTD. 70 MOO 5, KINGKAEW ROAD, BANGPHLI, SAMUTPRAKARN, 10540 THAILAND Tel : 0-2312-4159, 0-2312-4171-5, 0-23124165-7, 0-2750-3192-9, 0-2750-3200-1 Fax: (662)312-4162 http://www.goshukohsan.com E-mail: cservice@goshukohsan.com